Thèse
Auteur :
Jacob Laurent

Date de soutenance :
25 novembre 2009

Directeur(s) de thèse :
Vert Jean-Philippe
ED 431 INFORMATION COMMUNICATION MODELISATION ET SIMULATION
Ambroise Christophe
Pontil Massimiliano
Rognan Didier
Bach Francis
Grandvalet Yves
Vert Jean-Philippe



École :

MINES ParisTech
Intitulé de la thèse : A priori structurés pour l'apprentissage supervisé en biologie computationnelle


Résumé : Les méthodes d'apprentissage supervisé sont utilisées pour construire des fonctions prédisant efficacement le comportement de nouvelles entités à partir de données observées. Elles sont de ce fait très utiles en biologie computationnelle, où elles permettent d'exploiter la quantité grandissante de données expérimentales disponible. Dans certains cas cependant, la quantité de données disponible n'est pas suffisante par rapport à la complexité du problème d'apprentissage. Heureusement ce type de problème mal posé n'est pas nouveau en statistiques. Une approche classique est d'utiliser des méthodes de régularisation ou de manière équivalente d'introduire un a priori sur la forme que la fonction devrait avoir. Dans cette thèse, nous proposons de nouvelles fonctions de régularisation basées sur la connaissance biologique de certains problèmes. Dans le contexte de la conception de vaccins ou de médicaments, nous montrons comment l'utilisation du fait que les cibles similaires lient des ligands similaires permet d'améliorer sensiblement les prédictions pour les cibles ayant peu ou n'ayant pas de ligands connus. Nous proposons également une fonction prenant en compte le fait que seuls certains groupes inconnus de cibles partagent leur comportement de liaison. Finalement, dans le cadre de la prédiction de métastase de tumeurs à partir de données d'expression, nous construisons une fonction de régularisation favorisant les estimateurs parcimonieux dont le support est une union de groupes de gènes potentiellement chevauchants définis a priori, ou un ensemble de gènes ayant tendance à être connectés sur un graphe défini a priori.

© Mines de Paris 2019 - Réalisé par Winch Communication